SIHI FELLOW WORKSHOP

SHARE WHAT YOU SAW: STORYTELLING & RESEARCH DISSEMINATION

PREPARED BY BECAUSE STORIES
WELCOME
LEARNING OBJECTIVES

• Define research dissemination and storytelling
• Identify the most suitable approaches and develop a research dissemination strategy
• Enable participants to practice storytelling their research
MEET THE TEAM

SPEAKER
Malida Magista
SIHI Indonesia

SPEAKER
Marvinson Fajardo
SIHI-Philippines

Tina
Because Stories

Mia
Because Stories

PREPARED BY BECAUSE STORIES
PART 1: SETTING THE SCENE
SIHI FELLOW WORKSHOP: STORYTELLING AND RESEARCH DISSEMINATION
PREPARED BY BECAUSE STORIES
“Research is of no use unless it gets to the people who need to use it”

— Professor Chris Whitty, Chief Scientific Adviser for the Department of Health
INTRODUCING RESEARCH DISSEMINATION

“A planned process that involves consideration of target audiences, consideration of the settings in which research findings are to be received, and communicating and interacting with wider audiences in ways that will facilitate research uptake and understanding”.

KNOW YOUR AUDIENCE, TAILOR YOUR MESSAGE

WHO. (n.d.) Goal and audiences. https://www.who.int/about/communications/goal-and-key-audiences
FIVE STEPS TO DISSEMINATE YOUR RESEARCH

- Get the basics right
- Remix traditional outputs
- Think visual
- Find the right tools
- Evaluate, evaluate, evaluate

PREPARED BY BECAUSE STORIES
FIVE STEPS TO DISSEMINATE YOUR RESEARCH

1. Get the basics right

Defining objectives, mapping out the audiences, target and frame your messages and bring this together into a dissemination plan of what you will release and when.

2. Remix traditional outputs

Give traditional outputs like research articles and books an impact-boost with accompanying lay-summaries, press-releases, blogs, and visual/video abstracts.

FIVE STEPS TO DISSEMINATE YOUR RESEARCH

3. Think visual

Disseminate findings through art or multimedia interpretations. Let your artistic side loose or use new visualisation techniques to produce intuitive, attractive data displays.

VISUALIZING YOUR DATA

Understanding the context
Choose an effective visual
Eliminate clutter
Focus attention
Tell a story

EXAMPLE

Survey results: summer learning program on science

PRE: How do you feel about doing science?
- Bored: 19%
- Not great: 11%
- OK: 25%
- Kind of interested: 40%
- Excited: 5%

POST: How do you feel about doing science?
- Bored: 38%
- Not great: 12%
- OK: 30%
- Kind of interested: 14%
- Excited: 6%

Figure 9.28 Original visual

Pilot program was a success

After the pilot program, **68%** of kids expressed interest towards science, compared to 44% going into the program.

Based on survey of 100 students conducted before and after pilot program (100% response rate on both surveys).

Figure 9.29 Show the numbers directly

Pilot program was a success

How do you feel about science?

<table>
<thead>
<tr>
<th></th>
<th>Bored</th>
<th>Not great</th>
<th>OK</th>
<th>Kind of interested</th>
<th>Excited</th>
</tr>
</thead>
<tbody>
<tr>
<td>% of total</td>
<td>0%</td>
<td>20%</td>
<td>40%</td>
<td>60%</td>
<td>80%</td>
</tr>
</tbody>
</table>

BEFORE

BEFORE program, the majority of children (40%) felt just OK about science.

AFTER

AFTER program, more children were Kind of interested (30%) & Excited (38%) about science.

Based on survey of 100 students conducted before and after pilot program (100% response rate on both surveys).

Figure 9.31 100% stacked horizontal bar graph

FIVE STEPS TO DISSEMINATE YOUR RESEARCH

4. Find the right tools

Choose media, format, and dissemination strategy based on communication objectives.

FIVE STEPS TO DISSEMINATE YOUR RESEARCH

5. Evaluate, evaluate, evaluate

Assess your dissemination activities

“Most people are not data-driven. They are driven by emotional stories. Only then, can we provide the data, give them context, give them evidence. But they need to be moved by the story first.”

—Dr. Neal Baer
PART 2: INTRODUCING THE STORYTELLING TOOLKIT

SIHI FELLOW WORKSHOP:
SHARE WHAT YOU SAW: STORYTELLING & RESEARCH DISSEMINATION

PREPARED BY BECAUSE STORIES
INTRODUCING STORYTELLING

- **Humanize your research** through emotional and interesting storytelling (**O’Brien, 2019**)
- Within science, “the plural anecdote is not data”. However, in communicating science to non experts, “the plural anecdote is engaging science communication” (**Dahlstrom, 2013**)
- Deliver a **positive and optimistic story** by focusing more on solutions than problems (**O’Brien, 2019**)
- Crafting research like a story: the beginning (**plot**), the middle (**convince** the audience), and the end (**call to action**) (**Knaflic, 2020**)

PREPARED BY BECAUSE STORIES
For your reflection

What do you want your audience to know, feel, and do?

Know
What do you hope your story will make them more aware of?

Feel
What emotions do you hope your story will provoke?

Do
What actions should your story motivate them to take?
Crafting your own story

Status quo and first step

Introduce Your Protagonist

Begin by describing the main character(s) of your story

Open Eyes To The Problem

Recreate the moment when the character realized something needed to be done
Status quo and first step

Diagnose The Situation

Illustrate how the main character explore the situations and develop initial ideas for addressing it.

Obstacles and allies

Encounter Obstacles

What challenges did your characters encounter that prevented them from solving this problem on their own?

Obstacles and allies

Mobilize Allies To Join the Cause

Describe the community members or organizations who have a role in addressing this problem.

Show Cooperation In Action

What actions did everyone take? Describe their can-do attitude and how they cooperated, made decisions, and supported common goals.
Share The Impact

Describe *how people's lives were changed for the better*.

Impact

Call To Action

Your story has inspired and informed people. Now, what can they do to advance the cause?

PART 3: EXAMPLE
SIHI FELLOW WORKSHOP:
STORYTELLING AND RESEARCH DISSEMINATION
PREPARED BY BECAUSE STORIES
Efficacy of Wolbachia-Infected Mosquito Deployments for the Control of Dengue

BACKGROUND

Aedes aegypti mosquitoes infected with the uMel strain of Wolbachia pipientis are less susceptible than wild-type A. aegypti to dengue virus infection.

METHODS

We conducted a cluster-randomized trial involving releases of uMel-infected A. aegypti mosquitoes for the control of dengue in Yogyakarta, Indonesia. We randomly assigned 12 geographic clusters to receive deployments of uMel-infected A. aegypti (intervention clusters) and 12 clusters to receive no deployments (control clusters). All clusters practiced local mosquito-control measures as usual. A test-negative design was used to assess the efficacy of the intervention. Patients with acute undifferentiated fever who presented to local primary care clinics and were 3 to 45 years of age were recruited. Laboratory testing was used to identify participants who had virologically confirmed dengue (VCD) and those who were test-negative controls. The primary end point was symptomatic VCD of any severity caused by any dengue virus serotype.

RESULTS

After successful introgression of uMel into the intervention clusters, 8144 participants were enrolled; 3721 lived in intervention clusters, and 4423 lived in control clusters. In the intention-to-treat analysis, VCD occurred in 67 of 2905 participants (2.3%) in the intervention clusters and in 318 of 3401 (9.4%) in the control clusters (aggregate odds ratio for VCD, 0.23; 95% confidence interval [CI], 0.15 to 0.35; P=0.004). The protective efficacy of the intervention was 77.3% (95% CI, 65.3 to 84.9) and was similar against the four dengue virus serotypes. The incidence of hospitalization for VCD was lower among participants who lived in intervention clusters (13 of 2905 participants [0.4%]) than among those who lived in control clusters (102 of 3401 [3.0%]). (protective efficacy, 86.2%; 95% CI, 66.2 to 94.3).

CONCLUSIONS

Introgression of uMel into A. aegypti populations was effective in reducing the incidence of symptomatic dengue and resulted in fewer hospitalizations for dengue among the participants. (Funded by the Taliija Foundation and others; AWED ClinicalTrials.gov number, NCT03655985; Indonesia Registry number, INA-A7080-TW)